samerkamel
21-09-2019, 07:06 PM
Al Barsha Third Dubai Washing Machine Repair
Front-loading
The front-loading or horizontal-axis clothes washer is the dominant design in Europe. In the U.S. and elsewhere, most "high-end" washing machines are of this type. In addition, most commercial and industrial clothes washers around the world are of the horizontal-axis design.
This layout mounts the inner basket and outer tub horizontally, and loading is through a door at the front of the machine. The door often but not always contains a transparent window. Agitation is supplied by the back-and-forth rotation of the cylinder and by gravity. The clothes are lifted up by paddles on the inside wall of the drum and then dropped. This motion flexes the weave of the fabric and forces water and detergent solution through the clothes load. Because the wash action does not require the clothing be freely suspended in water, only enough water is needed to moisten the fabric. Because less water is required, front-loaders typically use less soap, and the repeated dropping and folding action of the tumbling can easily produce large amounts of foam or suds. Al Barsha Third Dubai Washing Machine Repair (https://www.rafeeg.ae/en/dubai/dubai-washing-machine-repair/al-barsha-third-5301/)
Front-loaders control water usage through the surface tension of water, and the capillary wicking action this creates in the fabric weave. A front-loader washer always fills to the same low water level, but a large pile of dry clothing standing in water will soak up the moisture, causing the water level to drop. The washer then refills to maintain the original water level. Because it takes time for this water absorption to occur with a motionless pile of fabric, nearly all front-loaders begin the washing process by slowly tumbling the clothing under the stream of water entering and filling the drum, to rapidly saturate the clothes with water.
Front-loading washers are mechanically simple compared to top-loaders, with the main motor (a universal motor or variable-frequency drive motor) normally being connected to the drum via a grooved pulley belt and large pulley wheel, without the need for a gearbox, clutch or crank. But front-load washers suffer from their own technical problems, due to the drum lying sideways. For example, a top loading washer keeps water inside the tub merely through the force of gravity pulling down on the water, while a front-loader must tightly seal the door shut with a gasket to prevent water dripping onto the floor during the wash cycle. This access door is locked shut during the entire wash cycle, since opening the door with the machine in use could result in water gushing out onto the floor. For front-loaders without viewing windows on the door, it is possible to accidentally pinch fabric between the door and the drum, resulting in tearing and damage to the pinched clothing during tumbling and spinning.
Nearly all front-loader washers for the consumer market also use a folded flexible bellows assembly around the door opening, to keep clothing contained inside the basket during the tumbling wash cycle. If this bellows assembly were not used, small articles of clothing such as socks could slip out of the wash basket near the door, and fall down the narrow slot between the outer tub and basket, plugging the drain and possibly jamming rotation of the inner basket. Retrieving lost items from between the outer tub and inner basket can require complete disassembly of the front of the washer and pulling out the entire inner wash basket. Commercial and industrial front-loaders used by businesses (described below) usually do not use the bellows, and instead require all small objects to be placed in a mesh bag to prevent loss near the basket opening.
The bellows assembly around the door is a potential source of problems for the consumer front-loader. The bellows has a large number of flexible folds to permit the tub to move separately from the door during the high speed extraction cycle. On many machines, these folds can collect lint, dirt, and moisture, resulting in mold and mildew growth, and a foul odor. Some front-loading washer operating instructions say the bellows should be wiped down monthly with a strong bleach solution, while others offer a special "freshening" cycle where the machine is run empty with a strong dosing of bleach. Jebel Ali 2 Dubai Washing Machine Repair (https://www.rafeeg.ae/en/dubai/dubai-washing-machine-repair/jebel-ali-2-5307/)
The inherent mechanical weak spot of the front loader design is the cantilevered mounting of the inner drum within the outer tub. The drum bearing has to support the entire weight of the drum, the laundry, and the dynamic loads created by the sloshing of the water and of the imbalance of the load during the spin cycle. The drum bearing eventually wears out, and usually requires extensive dismantling of the machine to replace, which often results in the machine being written off due to the failure of a relatively inexpensive component that is labor-intensive to renew. Some manufacturers have compounded this problem by "overmolding" the drum bearing into the outer tub to reduce manufacturing costs, but this makes the bearing impossible to renew without replacing the entire outer tub - which usually forces owners to scrap the entire machine - this may be viewed as an implementation of built-in obsolescence.
Compared to top-loading washers, clothing can be packed more tightly in a front loader, up to the full drum volume if using a cottons wash cycle. This is because wet cloth usually fits into a smaller space than dry cloth, and front loaders are able to self-regulate the water needed to achieve correct washing and rinsing. Extreme overloading of front-loading washers pushes fabrics towards the small gap between the loading door and the front of the wash basket, potentially resulting in fabrics lost between the basket and outer tub, and in severe cases, tearing of clothing and jamming the motion of the basket.
http://www.m9c.net/uploads/156897690310.jpg
Variant and hybrid designs
There are many variations of the two general designs. Top-loading machines in Asia use impellers instead of agitators. Impellers are similar to agitators except that they do not have the center post extending up in the middle of the wash tub basket. Al Barsha Second Dubai Washing Machine Repair (https://www.rafeeg.ae/en/dubai/dubai-washing-machine-repair/al-barsha-second-5293/)
Some machines which actually load from the top are otherwise much more similar to front-loading horizontal-axis drum machines. They have a drum rotating around a horizontal axis, as a front-loader, but there is no front door; instead there is a liftable lid which provides access to the drum, which has a hatch which can be latched shut. Clothes are loaded, the hatch and lid are closed, and the machine operates and spins just like a front-loader. These machines are narrower but usually taller than front-loaders, usually have a lower capacity, and are intended for use where only a narrow space is available, as is sometimes the case in Europe. They have incidental advantages: they can be loaded without bending down; they do not require a perishable rubber bellows seal; and instead of the drum having a single bearing on one side, it has a pair of symmetrical bearings, one on each side, avoiding asymmetrical bearing loading and potentially increasing life. This type of washing machine is popular in Europe, where space is limited, as a washer can be as little as 40 cm wide, and a full washer and dryer installation can be as little as 80 cm wide.
There are also combo washer dryer machines that combine washing cycles and a full drying cycle in the same drum, eliminating the need to transfer wet clothes from a washer to a dryer machine. In principle, these machines are convenient for overnight cleaning (the combined cycle is considerably longer), but the effective capacity for cleaning larger batches of laundry is drastically reduced. The drying process tends to use much more energy than using two separate devices, because a combo washer dryer not only must dry the clothing, but also needs to dry out the wash chamber itself. These machines are used more in Europe, because they can be fitted into small spaces, and many can be operated without dedicated utility connections. In these machines, the washer and dryer functions often have different capacities, with the dryer usually having the lowest capacity. These machines should not be confused with a dryer on top of a washer installation, or with a laundry center, which is a one piece appliance offering a compromise between a washer-dryer combo and a full washer to the side of the dryer installation or a dryer on top of a washer installation. Laundry centers usually have the dryer on top of the washer, with the controls for both machines being on a single control panel. Often, the controls are simpler than the controls on a washer-dryer combo or a dedicated washer and dryer.
Comparison
True front-loaders, and top-loading machines with horizontal-axis drum as described above, can be compared with top-loaders on a number of aspects:
Efficient cleaning: Front-loaders usually use less energy, water, and detergent compared to the best top-loaders. "High Efficiency" washers use 20% to 60% of the detergent, water and energy of "standard" washers. They usually take somewhat longer (20-110 minutes) to wash a load, but are often computer controlled with additional sensors, to adapt the wash cycle to the needs of each load. As this technology improves, the human interface will also improve, to make it easier to understand and control the many different cleaning options.
Water usage: Front-loaders usually use less water than top-loading residential clothes washers. Estimates are that front-loaders use from one third to one half as much water as top-loaders.
Spin-dry effectiveness: Front-loaders (and European horizontal axis top loaders and some front loaders) offer much higher maximum spin speeds of up to 2000 RPM, although home machines tend to be in the 1000 to 1400 RPM range, while top-loaders (with agitators) do not exceed 1140 RPM. High-efficiency top-loaders with a wash plate (instead of an agitator) can spin up to 1100 RPM, as their center of gravity is lower. Higher spin speeds, along with the diameter of the drum, determine the g-force, and a higher g-force removes more residual water, making clothes dry faster. This also reduces energy consumption if clothes are dried in a clothes dryer.
Cycle length: Top-loaders have tended to have shorter cycle times, in part because their design has traditionally emphasized simplicity and speed of operation more than resource conservation.
Wear and abrasion: Top-loaders require an agitator or impeller mechanism to force enough water through clothes to clean them effectively, which greatly increases mechanical wear and tear on fabrics. Front-loaders use paddles in the drum to repeatedly pick up and drop clothes into water for cleaning; this gentler action causes less wear. The amount of clothes wear can be roughly gauged by the amount of accumulation in a clothes dryer lint filter, since the lint largely consists of stray fibers detached from textiles during washing and drying.
Difficult items: Top-loaders may have trouble cleaning large items, such as sleeping bags or pillows, which tend to float on top of the wash water rather than circulate within it. In addition, vigorous top-loader agitator motions may damage delicate fabrics.
Noise: Front-loaders tend to operate more quietly than top-loaders because the door seal helps contain noise, and because there is less of a tendency to imbalance. Top-loaders usually need a mechanical transmission (due to agitators, see above), which can generate more noise than the rubber belt or direct drive found in most front loaders.
Compactness: True front-loading machines may be installed underneath counter-height work surfaces. A front-loading washing machine, in a fully fitted kitchen, may even be disguised as a kitchen cabinet. These models can also be convenient in homes with limited floor area, since the clothes dryer may be installed directly above the washer ("stacked" configuration).
Water leakage: Top-loading machines are less prone to leakage, because simple gravity can reliably keep water from spilling out the loading door on top. True front-loading machines require a flexible seal or gasket on the front door, and the front door must be locked during operation to prevent opening, lest large amounts of water spill out. This seal may leak and require replacement. However, many current front-loaders use so little water that they can be stopped mid-cycle for addition or removal of laundry, while keeping the water level in the horizontal tub below the door level. Best practice installations of either type of machine will include a floor drain or an overflow catch tray with a drain connection, since neither design is immune to leakage or a solenoid valve getting stuck in the open position.
Maintenance and reliability: Top-loading washers are more tolerant of maintenance neglect, and may not need a regular "freshening" cycle to clean door seals and bellows. During the spin cycle, a top-loading tub is free to move about inside the cabinet of the machine, using only a lip around the top of the inner basket and outer tub to keep the spinning water and clothing from spraying out over the edge. Therefore, the potentially problematic door-sealing and door-locking mechanisms used by true front-loaders are not needed. On the other hand, top-loaders use mechanical gearboxes that are more vulnerable to wear than simpler front-load motor drives.
Accessibility and ergonomics: Front-loaders are more convenient for very short people and those with paraplegia, as the controls are front-mounted and the horizontal drum eliminates the need for standing or climbing. Risers, also referred to as pedestals, often with storage drawers underneath, can be used to raise the door of a true front-loader closer to the user's level.
Initial cost: In countries where top-loaders are popular, front-loaders tend to be more expensive to buy than top-loaders, though their lower operating costs can ultimately lead to lower total cost of ownership, especially if energy, detergent, or water are expensive. On the other hand, in countries with a large front-loader user base, top-loaders are usually seen as alternatives and more expensive than basic off-brand front loaders, although without many differences in total cost of ownership apart from design-originated ones. In addition, manufacturers have tended to include more advanced features such as internal water heating, automatic dirt sensors, and high-speed emptying on front-loaders, although some of these features could be implemented on top-loaders.
Front-loading
The front-loading or horizontal-axis clothes washer is the dominant design in Europe. In the U.S. and elsewhere, most "high-end" washing machines are of this type. In addition, most commercial and industrial clothes washers around the world are of the horizontal-axis design.
This layout mounts the inner basket and outer tub horizontally, and loading is through a door at the front of the machine. The door often but not always contains a transparent window. Agitation is supplied by the back-and-forth rotation of the cylinder and by gravity. The clothes are lifted up by paddles on the inside wall of the drum and then dropped. This motion flexes the weave of the fabric and forces water and detergent solution through the clothes load. Because the wash action does not require the clothing be freely suspended in water, only enough water is needed to moisten the fabric. Because less water is required, front-loaders typically use less soap, and the repeated dropping and folding action of the tumbling can easily produce large amounts of foam or suds. Al Barsha Third Dubai Washing Machine Repair (https://www.rafeeg.ae/en/dubai/dubai-washing-machine-repair/al-barsha-third-5301/)
Front-loaders control water usage through the surface tension of water, and the capillary wicking action this creates in the fabric weave. A front-loader washer always fills to the same low water level, but a large pile of dry clothing standing in water will soak up the moisture, causing the water level to drop. The washer then refills to maintain the original water level. Because it takes time for this water absorption to occur with a motionless pile of fabric, nearly all front-loaders begin the washing process by slowly tumbling the clothing under the stream of water entering and filling the drum, to rapidly saturate the clothes with water.
Front-loading washers are mechanically simple compared to top-loaders, with the main motor (a universal motor or variable-frequency drive motor) normally being connected to the drum via a grooved pulley belt and large pulley wheel, without the need for a gearbox, clutch or crank. But front-load washers suffer from their own technical problems, due to the drum lying sideways. For example, a top loading washer keeps water inside the tub merely through the force of gravity pulling down on the water, while a front-loader must tightly seal the door shut with a gasket to prevent water dripping onto the floor during the wash cycle. This access door is locked shut during the entire wash cycle, since opening the door with the machine in use could result in water gushing out onto the floor. For front-loaders without viewing windows on the door, it is possible to accidentally pinch fabric between the door and the drum, resulting in tearing and damage to the pinched clothing during tumbling and spinning.
Nearly all front-loader washers for the consumer market also use a folded flexible bellows assembly around the door opening, to keep clothing contained inside the basket during the tumbling wash cycle. If this bellows assembly were not used, small articles of clothing such as socks could slip out of the wash basket near the door, and fall down the narrow slot between the outer tub and basket, plugging the drain and possibly jamming rotation of the inner basket. Retrieving lost items from between the outer tub and inner basket can require complete disassembly of the front of the washer and pulling out the entire inner wash basket. Commercial and industrial front-loaders used by businesses (described below) usually do not use the bellows, and instead require all small objects to be placed in a mesh bag to prevent loss near the basket opening.
The bellows assembly around the door is a potential source of problems for the consumer front-loader. The bellows has a large number of flexible folds to permit the tub to move separately from the door during the high speed extraction cycle. On many machines, these folds can collect lint, dirt, and moisture, resulting in mold and mildew growth, and a foul odor. Some front-loading washer operating instructions say the bellows should be wiped down monthly with a strong bleach solution, while others offer a special "freshening" cycle where the machine is run empty with a strong dosing of bleach. Jebel Ali 2 Dubai Washing Machine Repair (https://www.rafeeg.ae/en/dubai/dubai-washing-machine-repair/jebel-ali-2-5307/)
The inherent mechanical weak spot of the front loader design is the cantilevered mounting of the inner drum within the outer tub. The drum bearing has to support the entire weight of the drum, the laundry, and the dynamic loads created by the sloshing of the water and of the imbalance of the load during the spin cycle. The drum bearing eventually wears out, and usually requires extensive dismantling of the machine to replace, which often results in the machine being written off due to the failure of a relatively inexpensive component that is labor-intensive to renew. Some manufacturers have compounded this problem by "overmolding" the drum bearing into the outer tub to reduce manufacturing costs, but this makes the bearing impossible to renew without replacing the entire outer tub - which usually forces owners to scrap the entire machine - this may be viewed as an implementation of built-in obsolescence.
Compared to top-loading washers, clothing can be packed more tightly in a front loader, up to the full drum volume if using a cottons wash cycle. This is because wet cloth usually fits into a smaller space than dry cloth, and front loaders are able to self-regulate the water needed to achieve correct washing and rinsing. Extreme overloading of front-loading washers pushes fabrics towards the small gap between the loading door and the front of the wash basket, potentially resulting in fabrics lost between the basket and outer tub, and in severe cases, tearing of clothing and jamming the motion of the basket.
http://www.m9c.net/uploads/156897690310.jpg
Variant and hybrid designs
There are many variations of the two general designs. Top-loading machines in Asia use impellers instead of agitators. Impellers are similar to agitators except that they do not have the center post extending up in the middle of the wash tub basket. Al Barsha Second Dubai Washing Machine Repair (https://www.rafeeg.ae/en/dubai/dubai-washing-machine-repair/al-barsha-second-5293/)
Some machines which actually load from the top are otherwise much more similar to front-loading horizontal-axis drum machines. They have a drum rotating around a horizontal axis, as a front-loader, but there is no front door; instead there is a liftable lid which provides access to the drum, which has a hatch which can be latched shut. Clothes are loaded, the hatch and lid are closed, and the machine operates and spins just like a front-loader. These machines are narrower but usually taller than front-loaders, usually have a lower capacity, and are intended for use where only a narrow space is available, as is sometimes the case in Europe. They have incidental advantages: they can be loaded without bending down; they do not require a perishable rubber bellows seal; and instead of the drum having a single bearing on one side, it has a pair of symmetrical bearings, one on each side, avoiding asymmetrical bearing loading and potentially increasing life. This type of washing machine is popular in Europe, where space is limited, as a washer can be as little as 40 cm wide, and a full washer and dryer installation can be as little as 80 cm wide.
There are also combo washer dryer machines that combine washing cycles and a full drying cycle in the same drum, eliminating the need to transfer wet clothes from a washer to a dryer machine. In principle, these machines are convenient for overnight cleaning (the combined cycle is considerably longer), but the effective capacity for cleaning larger batches of laundry is drastically reduced. The drying process tends to use much more energy than using two separate devices, because a combo washer dryer not only must dry the clothing, but also needs to dry out the wash chamber itself. These machines are used more in Europe, because they can be fitted into small spaces, and many can be operated without dedicated utility connections. In these machines, the washer and dryer functions often have different capacities, with the dryer usually having the lowest capacity. These machines should not be confused with a dryer on top of a washer installation, or with a laundry center, which is a one piece appliance offering a compromise between a washer-dryer combo and a full washer to the side of the dryer installation or a dryer on top of a washer installation. Laundry centers usually have the dryer on top of the washer, with the controls for both machines being on a single control panel. Often, the controls are simpler than the controls on a washer-dryer combo or a dedicated washer and dryer.
Comparison
True front-loaders, and top-loading machines with horizontal-axis drum as described above, can be compared with top-loaders on a number of aspects:
Efficient cleaning: Front-loaders usually use less energy, water, and detergent compared to the best top-loaders. "High Efficiency" washers use 20% to 60% of the detergent, water and energy of "standard" washers. They usually take somewhat longer (20-110 minutes) to wash a load, but are often computer controlled with additional sensors, to adapt the wash cycle to the needs of each load. As this technology improves, the human interface will also improve, to make it easier to understand and control the many different cleaning options.
Water usage: Front-loaders usually use less water than top-loading residential clothes washers. Estimates are that front-loaders use from one third to one half as much water as top-loaders.
Spin-dry effectiveness: Front-loaders (and European horizontal axis top loaders and some front loaders) offer much higher maximum spin speeds of up to 2000 RPM, although home machines tend to be in the 1000 to 1400 RPM range, while top-loaders (with agitators) do not exceed 1140 RPM. High-efficiency top-loaders with a wash plate (instead of an agitator) can spin up to 1100 RPM, as their center of gravity is lower. Higher spin speeds, along with the diameter of the drum, determine the g-force, and a higher g-force removes more residual water, making clothes dry faster. This also reduces energy consumption if clothes are dried in a clothes dryer.
Cycle length: Top-loaders have tended to have shorter cycle times, in part because their design has traditionally emphasized simplicity and speed of operation more than resource conservation.
Wear and abrasion: Top-loaders require an agitator or impeller mechanism to force enough water through clothes to clean them effectively, which greatly increases mechanical wear and tear on fabrics. Front-loaders use paddles in the drum to repeatedly pick up and drop clothes into water for cleaning; this gentler action causes less wear. The amount of clothes wear can be roughly gauged by the amount of accumulation in a clothes dryer lint filter, since the lint largely consists of stray fibers detached from textiles during washing and drying.
Difficult items: Top-loaders may have trouble cleaning large items, such as sleeping bags or pillows, which tend to float on top of the wash water rather than circulate within it. In addition, vigorous top-loader agitator motions may damage delicate fabrics.
Noise: Front-loaders tend to operate more quietly than top-loaders because the door seal helps contain noise, and because there is less of a tendency to imbalance. Top-loaders usually need a mechanical transmission (due to agitators, see above), which can generate more noise than the rubber belt or direct drive found in most front loaders.
Compactness: True front-loading machines may be installed underneath counter-height work surfaces. A front-loading washing machine, in a fully fitted kitchen, may even be disguised as a kitchen cabinet. These models can also be convenient in homes with limited floor area, since the clothes dryer may be installed directly above the washer ("stacked" configuration).
Water leakage: Top-loading machines are less prone to leakage, because simple gravity can reliably keep water from spilling out the loading door on top. True front-loading machines require a flexible seal or gasket on the front door, and the front door must be locked during operation to prevent opening, lest large amounts of water spill out. This seal may leak and require replacement. However, many current front-loaders use so little water that they can be stopped mid-cycle for addition or removal of laundry, while keeping the water level in the horizontal tub below the door level. Best practice installations of either type of machine will include a floor drain or an overflow catch tray with a drain connection, since neither design is immune to leakage or a solenoid valve getting stuck in the open position.
Maintenance and reliability: Top-loading washers are more tolerant of maintenance neglect, and may not need a regular "freshening" cycle to clean door seals and bellows. During the spin cycle, a top-loading tub is free to move about inside the cabinet of the machine, using only a lip around the top of the inner basket and outer tub to keep the spinning water and clothing from spraying out over the edge. Therefore, the potentially problematic door-sealing and door-locking mechanisms used by true front-loaders are not needed. On the other hand, top-loaders use mechanical gearboxes that are more vulnerable to wear than simpler front-load motor drives.
Accessibility and ergonomics: Front-loaders are more convenient for very short people and those with paraplegia, as the controls are front-mounted and the horizontal drum eliminates the need for standing or climbing. Risers, also referred to as pedestals, often with storage drawers underneath, can be used to raise the door of a true front-loader closer to the user's level.
Initial cost: In countries where top-loaders are popular, front-loaders tend to be more expensive to buy than top-loaders, though their lower operating costs can ultimately lead to lower total cost of ownership, especially if energy, detergent, or water are expensive. On the other hand, in countries with a large front-loader user base, top-loaders are usually seen as alternatives and more expensive than basic off-brand front loaders, although without many differences in total cost of ownership apart from design-originated ones. In addition, manufacturers have tended to include more advanced features such as internal water heating, automatic dirt sensors, and high-speed emptying on front-loaders, although some of these features could be implemented on top-loaders.